Concerning Sequences of Homeomorphisms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sum concerning Sequences

Let A={a(n)} co n=1 be a sequence of positive integers. In this paper we prove that if the trailing digit of a(n) is not zero for any n, then sum of a(n)/Rev Ca(n)) is divergent

متن کامل

A remark concerning graphical sequences

In “A note on a theorem of Erdös & Gallai” ([6]) one identifies the nonredundant inequalities in a characterization of graphical sequences. We explain how this result may be obtained directly from a simple geometrical observation involving weak majorization. A sequence of positive integers d1, d2, . . . , dp is called graphical if it is the degree sequence of a graph, i.e., there is a graph who...

متن کامل

Concerning the Ordering of Adaptive Test Sequences

The testing of a state-based system may involve the application of a number of adaptive test sequences. Where the implementation under test (IUT) is deterministic, the response of the IUT to some adaptive test sequence γ1 may be capable of determining the response of the IUT to some other adaptive test sequence γ2. Thus, the expected cost of applying a set of adaptive test sequences depends upo...

متن کامل

On an Extremal Problem concerning Primitive Sequences

A sequence a,< . . . of integers is called primitive if no a divides any other . (a 1 < . . . will always denote a primitive sequence .) It is easy to see that if a i < . . . < a,,, < n then max k = [(n + 1) /2] . The following question seems to be very much more difficult . Put f(n) =niax E 1) , a,, where the maximum is taken over all primitive sequences all of wliose terms are not exceeding n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1932

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.18.6.460